Что такое альтернативные источники энергии: виды, выгода и перспективы развития

Геотермальная энергия или энергия тепла Земли

Она может использоваться по прямому назначению, либо для получения электроэнергии. Преобразование энергии происходит на геотермальных станциях – ГеоТЭС.

Источники геотермальной энергии могут быть высоко- и низкопотенциальными. К высокопотенциальным источникам относятся гидротермальные ресурсы (термальная вода). Их применяют для отопления помещений.

Низкопотенциальные источники энергии, в свою очередь, бывают естественными (воздух атмосферы, грунтовая вода, сам грунт) и искусственными (вентиляционный воздух помещения, отработанные воздух, вода или тепло). Данные источники применяют для кондиционирования, теплоснабжения и горячего водоснабжения.

Традиционная энергетика

К традиционной энергетике относят угольные и газовые тепловые электростанции, а также ТЭЦ, работающие на мазуте. С точки зрения экологии наибольшие нарекания вызывает сжигание угля и мазута. В результате этого в атмосферу выбрасывается большое количество углекислого газа, окиси серы и золы. Увеличение содержания углекислоты в атмосфере, по мнению некоторых учёных, может привести к нежелательному изменению климата планеты. Окись серы вызывает кислотные дожди, зола может сильно загрязнять среду в регионе расположения электростанции. Сжигание газа загрязняет атмосферу во всех отношениях в меньшей степени и пока даёт самую дешёвую традиционную энергию, но разведанные запасы газа в отличие от угля весьма ограничены. При существующем уровне добычи известных запасов хватит на 50-60 лет. Сегодня традиционная энергетика является основным источником энергии для человечества.

Ядерная энергетика, которую иногда относят к традиционной, имеет существенные отличия. Во-первых, перспективы исчерпания запасов топлива, с учётом технологий наработки нового топлива в реакторах, гораздо более отдалённы. Во- вторых, она не загрязняет атмосферу ни углекислым газом, ни окисью серы. В-третьих, топливо ядерной энергетики не является ценным сырьём для других отраслей промышленности.

Основными достоинствами традиционной и ядерной энергетики являются стабильность выработки энергии и относительная свобода размещения (не локальность). Транспортировка ядерного топлива не вызывает существенных издержек, по трубопроводам газ и нефть можно относительно дёшево перемещать на большие расстояния, рентабельность угольных станций от размещения зависит более существенно, но не драматично.

Гидроэнергетика

К возобновляемым источникам энергии относятся широко распространенные гидроэлектростанции. На этих объектах используется потенциальная энергия водных потоков.

Традиционные гидроэлектростанции

Возводят гидроэлектростанции, как правило, на реках. Для создания необходимого давления воды создают мощные плотины и объемные хранилища воды. Как разновидность, используют бесплотинные ГЭС.

Данным объектам (ГЭС) гидроэнергетики присущи следующие особенности.

Положительные:

  1. высокий КПД при сравнительно малых экономических затратах на строительство и дальнейшую эксплуатацию станции, отсюда низкая себестоимость электроэнергии;
  2. отсутствуют вредные выбросы в атмосферу;
  3. водохранилище как фактор, улучшающий микроклимат в районе ГЭС;
  4. возможность разведения рыб;
  5. предотвращает появление паводков, используется для орошения сельхозугодий, технического применения на заводах;
  6. обладают механизмом регулирования потребления энергии.

Отрицательные:

  1. водохранилища затопляют обширные территории, занимают земли, пригодные для сельского хозяйства;
  2. перекрытие рек существенно меняет условия для обитания ценных видов проходных рыб, многие из которых исчезают из облюбованных ранее водоемов.

Гидроэлектростанции, как возобновляемые источники энергии, эффективны для поставки электроэнергии в горные участки. Они имеются в Швейцарии, на территории России. В мировом объеме поставляемой энергии доля гидроресурсов составляет около трех процентов. В Канаде, Исландии и Китае основную часть электроэнергии вырабатывают именно гидростанции.

Красноярская гидроэлектростанция

В России строительство гидроэлектростанций всегда считалось выгодным направлением. В наши дни гидростанции вырабатывают 6 процентов электроэнергии страны. Площади крупнейших водохранилищ ГЭС составляют тысячи квадратных километров. В пример можно привести размеры Самарского водохранилища, площадь которого превышает 6400 км2.

Приливные электростанции

Особой разновидностью гидроэнергетики являются приливные электростанции, работающие на основе использования энергии приливов и отливов. Они возводятся на побережьях, где под воздействием гравитационных сил Солнца и Луны ежедневно меняется уровень воды морских и речных водоемов. Залив или устье реки перегораживают дамбой. Встроенный в неё гидроагрегат с огромными лопастями и преобразует силу прибоя в электроэнергию.

Так устроена приливная гидроэлектростанция

Такая форма получения энергии из неисчерпаемого источника очень экологична, имеет малую себестоимость. Однако само строительство требует больших вложений. Кроме того, перепады в мощности не позволяют поставлять электроэнергию в постоянном режиме. Тем не менее, станции ПЭС ценят за высокую эффективность и малое влияние на экологию. Их строительство продолжается во многих странах.

Волновые электростанции

Энергия волн представляет собой огромный потенциал. Удельную мощность морских и океанских волновых колебаний оценивают гораздо выше солнечной и ветровой. Специалисты подсчитали, что мощность волн мирового океана равна примерно 30 процентам всей потребляемой электроэнергии на Земле.

Волновая гидроэлектростанция Oyster в Шотландской прибрежной зоне мощностью 600 кВт

Работа волновых электростанций построена на превращении потенциальной энергии волн в электрическую. Выбор места строительства подобных объектов получения электричества обусловлен особенностями региона, наличием крупных водоемов и сильных ветров.

Гидроэнергетика будущего

Гидроэнергетика не стоит на месте. Постоянно придумываются новые специфические виды использования силы мирового океана. К примеру, в данный момент разрабатываются технологии использования в энергетике морских течений и разницы температур на различных глубинах.

Океанские и морские течения (Куросио, Гольфстрима и т.п.) также обладают определенной энергетической силой, потенциал которой на практике пока не оценен. Но ученые и проектировщики считают возведение гидростанций, использующих энергию водных течений, перспективном направлением в морской энергетике. Согласно технологии, применяют специальные преобразователи в виде объемных и водяных насосов.

Роторная система Seagen, расположенная у побережья Ирландии, преобразует энергию течений в электроэнергию

Электроэнергию можно получать, используя разницу температур поверхности и глубинных слоев моря или океана. Разность на глубине 400 м и верхнего слоя воды составляет 12 градусов. В данный момент уже существуют экспериментальные системы преобразования разницы температур в электричество, основанные на пьезоэффекте.

Использование для частного дома

Использование альтернативных источников для отопления загородного дома или дачи, а также для его электроснабжения, может быть осуществлено достаточно успешно. В этом случае все зависит от региона проживания пользователя и места расположения объекта потребления энергии.

Способность вырабатывать электрический ток солнечными станциями и ветровыми установками зависит от активности солнца и скорости ветра в месте их размещения, а также прочих погодных явлений, характеризующих этот регион.

Устройство микро ГЭС возможно только при наличии вблизи объекта потребления реки или иного водоема, а геотермальной станции – при присутствии близко расположенных к поверхности земли геотермальных вод.

Биотопливо в виде дров и продуктов отходов деревопереработки, возможно в регионах страны богатых лесами, с развитой промышленностью данного направления.

Получение биогаза и жидкого топлива — доступно там, где большие территории отведены под выращивание сельскохозяйственных культур, что позволяет иметь большой запас биомассы, используемой для производства этих видов топлива.

Энергия солнца

Всевозможные гелиоустановки используют солнечное излучение как альтернативный источник энергии. Излучение Солнца можно использовать как для нужд теплоснабжения, так и для получения электричества.

Существуют разные способы преобразования солнечного излучения в тепловую и электроэнергию и, соответственно, различные типы солнечных электростанций. Наиболее распространены станции, использующие фотоэлектрические преобразователи (фотоэлементы), объединенные в солнечные батареи.

Солнечные электростанции активно используются более чем в 80 странах мира. Большинство крупнейших фотоэлектрических установок мира находятся в США.

К преимуществам солнечной энергии можно отнести возобновляемость данного источника энергии, бесшумность, отсутствие вредных выбросов в атмосферу при переработке солнечного излучения в другие виды энергии.

Недостатками в использовании солнечной энергии являются дороговизна оборудования, зависимость интенсивности солнечного излучения от суточного и сезонного ритма, а также, необходимость больших площадей для строительства солнечных электростанций. Также серьёзной экологической проблемой является использование при изготовлении фотоэлектрических элементов для гелиосистем ядовитых и токсичных веществ, что создаёт проблему их утилизации.

Солнечная энергетика

Рост мощности солнечной энергетики в мире

Существуют две основные разновидности солнечных электростанций. На станциях первого типа (гелиоконцентраторы) вода нагревается светом, который концентрируется с помощью системы управляемых зеркал. Эти станции достаточно сложны в конструкции. Станции второго типа представляют батарею фотоэлементов. Стоимость фотоэлементов достаточно высока, а КПД не превышает 20 %. Однако такая станция не только проста в конструкции, но в чистой атмосфере, например в горах, практически не требует обслуживания. Сегодня стоимость энергии фотоэлектрических станций существенно ниже, чем гелиоконцентраторов, и продолжает снижаться. Поэтому фотоэлектрические станции занимают доминирующее положение по количеству произведённой энергии и на рынке. Они широко используются и для промышленного производства, и в домохозяйствах.

Недостатками солнечной энергетики по сравнению с ветроэнергетикой являются:

  • Жёсткая зависимость вырабатываемой мощности от времени суток..
  • Жесткая сезонность в не тропической зоне.
  • Нерентабельность в высоких широтах.
  • Значительная площадь электростанции.
  • Необходимость периодической очистки фотоэлементов.

В связи с этими недостатками, существенными для развития отрасли в отдельно взятой европейской стране, установленные мощности солнечной энергетики сегодня уступают установленным мощностям ветроэнергетики. Стабильность выработки солнечной энергии в качестве основной во все сезоны теоретически могут обеспечить Саудовская Аравия или Египет, но не европейские страны. И даже африканским странам придётся решать проблему ночного энергоснабжения с помощью энергонакопителей.

Тем не менее, солнечная энергетика сегодня также развивается по экспоненте, а её потенциал глобально практически неисчерпаем уже на уровне современных технологий.

Гипотетические возможности

Теоретически покрытие относительно совсем небольшой площади пустынь северной и южной Африки, Америки, Австралии и Азии современными фотоэлементами и объединение этих электростанций в мировую сеть может в избытке обеспечить человечество чистой и, в силу глобальности, стабильной энергией. Для реализации проекта необходимо решение всего двух проблем, одной технической и одной политической. Во-первых, надо обеспечить доставку этой энергии ко всем местам её потребления. Во-вторых, необходимо одно мировое правительство для всего человечества.

Основные виды

Виды альтернативных источников добычи энергии не ограничиваются солнечным светом и ветром.

Всегда перед потребителем стоит выбор, основанный на вопросе, что лучше? И в этом плане подразумевается, во-первых, затраты на приобретение нового вида источника электричества, во-вторых, как долго этот прибор будет работать. То есть, будет ли это выгодно, окупится ли вся затея, а если окупится, то через какой промежуток времени? Скажем так, экономию денежных средств еще никто не отменял.

Как видите, вопросов и проблем и здесь хватает, потому что электричество своими руками – дело не только серьезное, но и достаточно затратное.

Ядерная энергетика

Атомная электростанция Ясловское Богунице в Словении

Для выработки электричества этим способом используют ядерную энергию (обычно вызывают цепную реакцию урана-235 или плутония-239). Работа атомных электростанций характеризуется экологичностью (при условии безаварийной работы) и дешевой выработкой энергии. Мощность при этом можно наращивать долго.

Многие страны с большой плотностью населения сворачивают работу АЭС в связи с долгосрочным заражением и отравлением территорий в случае аварий. Италия полностью отказалась от ядерной энергетики, а Бельгия, Германия и Испания начали длительную политику по постепенному отказу от АЭС.

Другими проблемами этого вида добычи являются стоимость утилизации отработанного материала и тепловое загрязнение, при котором выброс тепла сказывается на ускорении глобального потепления.

Энергия солнца

Солнечная энергия считается ведущим и экологически чистым источником энергии. На сегодня для получения электроэнергии разработаны и используются термодинамический и фотоэлектрический метод. Подтверждается концепция работоспособности и перспективности наноантенн. Солнце, являясь неистощимым источником экологически чистой энергии, вполне может обеспечить потребности человечества.

Энергия ветра

Давно и успешно используется людьми энергия ветра, ветряков. Ученые разрабатывают новые и совершенствуют имеющиеся ветряные электростанции. Снижая затраты и повышая КПД ветряков. Особую актуальность они имеют на побережьях и в местностях с постоянными ветрами. Преобразуя кинетическую энергию воздушных масс в дешевую электрическую энергию, ветряные электростанции уже сегодня вносят существенный вклад в энергосистему отдельных стран.

Геотермальная энергетика

Источники геотермальной энергии используют неисчерпаемый источник — внутреннее тепло Земли. Существует несколько рабочих схем, не меняющих суть процесса. Природный пар очищают от газов и подают в турбины, вращающие электрогенераторы. Подобные установки работают по всему миру. Геотермальные источники дают электричество, греют целые города и освещают улицы. Но мощность геотермальной энергетики использована очень мало, а технологии получения имеют низкий КПД.

Приливная и волновая энергетика

Не стоит сбрасывать со счетов приливы и отливы моря. Здесь огромный склад энергии, которую уже давно жители приморских регионов используют себе во благо. Начнем с того, что вода плотнее воздуха почти в 900 раз, поэтому небольшое ее движение заставляет крутиться турбины. Конечно, такое сооружение не под силу хозяину частного дома, поэтому на нем не стоит останавливаться

Но для информации примите это во внимание. Тем более мы рассматриваем альтернативные виды энергии. Приливная и волновая энергетика – это бурно развивающийся способ преобразования потенциальной энергии движения водяных масс в электрическую энергию

Имея высокий коэффициент преобразования энергии, технология имеет большой потенциал. Правда, может использоваться только на побережьях океанов и морей

Приливная и волновая энергетика – это бурно развивающийся способ преобразования потенциальной энергии движения водяных масс в электрическую энергию. Имея высокий коэффициент преобразования энергии, технология имеет большой потенциал. Правда, может использоваться только на побережьях океанов и морей.

Биомассовая энергетика

Процесс разложения биомассы приводит к выделению газа имеющим в своем составе метан. Очищенным, он используется для выработки электроэнергии, обогрева помещений и других хозяйственных нужд. Существуют небольшие предприятия, полностью обеспечивающие свои энергетические потребности.

Прочие варианты

Существуют и другие виды альтернативной энергетики:

  • Мускульная энергетика;
  • Криоэнергетика;
  • Гравитационная энергетика;
  • Вулканическая энергетика.

Но у этих способов тоже есть свои недостатки: так, последний АИЭ локален.

Основные виды альтернативной энергетики

Таблица 1. Основные виды ВИЭ и их характеристика

Вид энергии

Оценочная мощность, ТВт

Степень использования в хозяйственном Комплексе, ТВт

Проблемы в использовании

Степень воздействия на окружающую среду при использовании

Солнечная энергия (поток прямой, рассеянной радиации)

100000

0,3

Не равномерность в пространстве и времени

Воздействие на окружающую среду варьируется от минимальных до допустимых

Энергия солнечного и космического ветра

0,001

Отсутствует

Малая величина у поверхности земли

Отсутствует

Энергия приливов и отливов морей и океанов

1

0,01

Узкая пространственная локализация

Приводит к существенному преобразованию ландшафта прибрежных территорий

Потенциальная и кинетическая энергия воды

3

1,0

Высокие капитальные затраты на технологическом этапе

Приводит к существенному преобразованию ландшафта обширных территорий

Потенциальная и кинетическая энергия ветра

2000

0,5

Не равномерность в пространстве и времени

Воздействие на окружающую среду варьируется от минимальных до допустимых

Геотермальные источники энергии

30

0,01

Узкая пространственная локализация

Воздействие на окружающую среду варьируется от минимальных до допустимых

Энергия земного магнетизма

10

Отсутствует

Технологическая сложность преобразования в тепловую энергию

Отсутствует

Энергия ядерного синтеза и атомного распада

300

10

Крайне высокая опасность в случае аварий

Является потенциально высоко опасной в случае катастрофических ситуаций

Возобновляемая энергетика обеспечивает более четверти (26%) мирового производства электроэнергии. С 2000 года, за исключением гидроэнергетики, выработка электроэнер­гии на основе ВИЭ выросла более чем в 10 раз, и на первом месте стоят ветровая и солнечная энергия.

Рис. 1. Доля ВИЭ в общем производстве электроэнергии в мире в 2019 году

Геотермальные станции

Геотермальная энергетика базируется на использовании естественого тепла Земли и горячих источников в ее недрах. Добываемый пар поступает по трубам на поверхность и вращает турбины. Стоимость электроэнергии включает в себя затраты на бурение скважин и очистку от газов, вызывающих коррозию металла. Но благодаря отсутствию котла, систем удаления дыма и топки издержки относительно невелики.

К недостаткам таких электроустановок относится высокое содержание растворенных в горячей воде вредных газов, которые могут привести к заражению окружающей среды, а также необходимость учета геологических и сейсмологических ограничений для недопущения провала грунта вокруг скважины.

Это интересно: Как выбрать газовую колонку: какая лучше и почему + видео

Применение возобновляемых источников энергетики в РФ

На сегодняшний день мощность электрической энергетики государства находится в пределах 200 ГВт. При условии применения электрических станций, основанных на ВИЭ, к началу 2020 года их мощность может достигнуть показателя в 40 ГВт.

На ветровые станции приходится 20 ГВт, на ТЭС с основой в виде биологической массы – 13 ГВт; оставшаяся энергия будет получена от солнечных, геотермальных и небольших гидроэлектростанций.

По предположениям исследователей в этой области, к началу 2020 года от электростанций на основе ВИЭ можно будет получать до 13% всей электроэнергии.

Воплотить в жизнь сценарий по получению электроэнергии с помощью источников ВИЭ не составляет особого труда, тем более что его использование повлечет за собой заботу о защите окружающей среды.

Многие страны мира рассматривают возобновляемые источники энергетики, как источник большого количества электроэнергии. В РФ, к сожалению, подходят к этому вопросу с более скромными планами. Но наша выставка поставила задачу познакомить с самыми новейшими разработками и идеями как можно большее количество людей.

Больше о возобновляемой энергетике, её перспективах, недостатках, преимуществах, технологиях применяемых в этой области; можно узнать на ежегодной выставке «Электро».

Малая энергетика РоссииАвтоматика и телемеханика в энергетикеПрограммное обеспечение в энергетике

Мифы ториевой энергетики

Начнем с самого простого. Торий — это ядерный яд. То есть, сам по себе он не способен запустить цепную реакцию — торию в реакторе нужен инициирующий элемент. Таким может послужить только уран, в первую очередь изотоп уран-235, или плутоний-239.

Таким образом, уже в рамках проектирования реактора понадобятся урановые сборки. Отказаться от обогащения урана и его добычи не получится. Однако его количество будет в 3-10 раз меньше, чем для традиционных АЭС. А это означает, что нынешний уровень потребления урана — более 65 килотонн ежегодно, можно резко сократить.

Второй важный момент — проблема с повторным использованием отработанного ядерного топлива, которого накопилось очень много. Ториевому реактору просто не нужно такое количество урана и плутония. Так что получается палка о двух концах: да, мы снизим потребление урана и плутония, но от их переработки и захоронения ядерных отходов мы не сможем отказаться. Это отдельная проблема, которая не решается в рамках нового направления ядерной энергетики.

Третий фактор связан с запасами тория. Дело в том, что торий добывают из монацита, минерала, содержание фосфата тория в котором составляет  6-7%. Монацит содержится в магматических и других породах, но самые высокие его концентрации находятся в россыпных отложениях, сконцентрированных с другими тяжелыми минералами. То есть без коммерческого извлечения редкоземельных элементов производство тория сейчас нерентабельно. Экономически выгоднее добывать уран. Так что ториевые реакторы не имеют никаких экономических преимуществ перед традиционной АЭС. Единственная страна, в которой этот фактор не работает — Индия. В стране большие запасы тория, перевод местных АЭС на торий может оказаться прибыльным. Тем более, что Индия испытывает настоящий энергетический голод. И по мере превращения страны из аграрной в урбанистическую, энергии будет нужно всё больше. Но «Усовершенствованный тяжеловодный реактор» (AHWR) индийского производства, работающий на торий-урановых и торий-плутониевых сборках, до сих пор не закончен.

Проблема еще и в том, что ториевый реактор — это сильно корродирующая среда. Помимо этого, в результате реакции в нем образуется изотоп уран-232. Его продукты распада, висмут-212 и таллий-208, характеризуются жестким гамма-излучением, которое сложно экранировать. Поэтому уровень безопасности и защищенности персонала и электроники для ториевых реакторов по идее должен быть выше, чем на традиционной АЭС.

Однако, проверить эти теоретические выкладки можно только на действующих ториевых реакторах разных моделей. А их пока не так много. Вся надежда на китайскую установку и на то, что данные по ее эксплуатации не будут засекречены.

Россия тоже старается не отстать от ториевого клуба. В ближайшие 15-20 лет запланировано использование тория в уже существующих реакторах типа ВВЭР и БН. А после, в проектируемых реакторах Супер-ВВЭР, в котором значительная часть отработанного ядерного топлива будет использована для производства нового. 

Остается вопрос с отходами ториевых реакторов. Согласно исследованию Минэнерго США за 2014 год, отходы торий-уранового цикла имеют такую же радиоактивность на отрезке времени в 100 лет, что и уран-плутониевые топливные циклы, и более высокую радиоактивность отходов на отрезке 100000 лет. К тому же, если мы знаем как работать с отходами уран-плутониевых циклов, то опыта работы с отходами ториевых реакторов у нас нет.

При всем положительном отношении автора этих строк к новым технологиям в области атомной энергетики, чтобы сказать, что торий — светлое будущее этой области понадобится еще как минимум лет 10. А сейчас здесь больше мифов, маркетинга и попыток найти инвесторов для проектов, которые вовсе не обязательно будут экономически и экологически более выгодными, чем повышение безопасности и технологичности уже использующихся атомных технологий.

Перспективы энергетики и возобновляемых источников энергии

Что касается возобновляемой энергетики, Россия тоже имеет большой потенциал. Страна заинтересована в развитии и потреблении подобной электроэнергии хотя бы потому, что подключение к общим электросетям жителей отдаленных частей страны достаточно трудоемко и дорого.

С помощью возобновляемой электроэнергии эти вопросы можно было бы решить. В России есть энергодефицитные регионы, подача электроэнергии на местном уровне довольно слабая и ненадежная, что впоследствии приводит к частым отключениям электричества. Это, в свою очередь, дестабилизирует жизнь местных жителей, а также может привести к проблемам и неполадкам на различных производствах.

Если в таких местах использовать возобновляемую энергетику, это бы нивелировало множество проблем, в том числе и сократило бы бюджетные средства, выделяемые на доставку топлива.

Перспективные технологии возобновляемой энергетики являются единственным выходом для сел, индивидуальных жилых строений, многих предприятий рыбной или лесной промышленности, для метеорологических или археологических станций, маяков, радаров, а также для морских платформ на выработках нефти или газа.

Возобновляемая энергетика остается результативным способом снабжения электроэнергией этих объектов.

Благодаря внедрению нетрадиционных возобновляемых источников электроэнергии на курортах страны и в городах с повышенным загрязнением кислорода, возможно значительное улучшение экологической обстановки.

Перспективные технологии возобновляемой энергии

В России разработана специализированная технологическая платформа, которая поставила перед собой определенные цели до 2030 года. К этим целям необходимо отнести то, что к 2030 году российские технологии и продукты будут соответствовать лучшим показателям в мире по возобновляемым источникам энергии.

Кроме того, необходимо будет обеспечить конкурентоспособность технологий, выпускаемых и производимых в России, на глобальных рынках возобновляемых источников энергии. За счет широкого спектра направлений бизнеса в этой отрасли отрасль энергетики укрепится и не будет колебаться на рынке.

Россия обладает не только колоссальными запасами исчерпаемых источников энергии, но и, просто безграничными возможностями в области восстанавливаемой энергетики. Обусловлено это простым фактором – большой площадью страны, включающей в себя различные климатические пояса и географические условия. Другие страны имеют возможность развивать лишь один вид «зеленой» энергетики.

Ежегодно многие центры возобновляемой энергетики и их представители принимают участие в выставке «Электро», которая проходит в «Экспоцентре».

Гидроэнергетика

Озера и водохранилища нашей страны бесчисленны, а по числу рек Россия занимает 2-е место в мире. Гидроэнергетический потенциал России приблизительно равен 29000 млрд. кВт-ч./ год. Наиболее пригодны для дальнейшего роста гидроэнергетики как возобновляемого источника энергии территории с крупными речными артериями – Восточная, центральная Сибирь, Дальний восток, а также Кавказ.

Ветроэнергетика и центры возобновляемой энергетики

Возможность реализации проектов по строительству ветровых станций на территории РФ неравномерна. Наиболее благоприятна для этого территория вдоль северных морей – Охотского, Баренцева и Карского, где наивысшая скорость ветра.

Энергия ветра эффективно может быть использована на малонаселенных территориях страны, что позволяет разрабатывать ее освоение в качестве источника энергии для крупных предприятий. Экономически наиболее подходящими для данной отрасли является Дальний Восток и Сибирь.

Энергия Солнца

Очевидно, что наиболее пригодными для использования солнечной радиации в экономических целях являются территории, расположенные на экваторе и в ближних к нему широтах. Для России это Сочи, Астрахань, чуть восточнее – Кызыл и Владивосток.

Биомасса как источник энергии – это леса и лесные местности, а так же отходы лесоперерабатывающего производства центров возобновляемой энергетики. В год наша страна производит до 15 млрд. тонн биомассы.

Только северо-западные области нашей страны (Новгородская, Архангельская, Республика Карелия и др.) могли бы производить до 50 ТВТ-ч./г.

Геотермальная энергетика

Популярно использование данного вида энергии для подогрева воды, отопления жилищ и участков, особенно на курортах. Применения этой энергии в промышленных масштабах возможно лишь на той территории, где геотермальные источники подходят наиболее близко к почве.

В настоящее время центром разработки геотермальной энергетики в нашей стране является Камчатка, неосвоенными остаются ресурсы Кавказа, Байкала и Урала.

Таким образом, очевидно, что наша страна обладает несколькими крупными центрами развития возобновляемых энергетических ресурсов, за которыми, по мнению большинства современных ученых и экономистов, стоит будущее развитие бизнеса и экономики мира.

Что такое альтернативная энергетика?

Само название альтернативной энергетики говорит, что это энергетика, которая отличается от традиционной. В традиционной энергетике используются такие ресурсы, которые невозможно восполнить, и когда-нибудь они закончатся. Альтернативная энергетика – это комплекс мер получения, передачи и использования энергии возобновляемых природных ресурсов.

Россия отстает от многих стран мира по применению альтернативных источников. Основная причина – большие запасы ископаемого топлива. Пока доля возобновляемых источников в энергетике страны мала, но каждый год вводятся в эксплуатацию новые электростанции, работающие на альтернативной энергии:

  • солнечной;
  • ветровой;
  • приливной;
  • геотермальной и других.

Развитие альтернативной энергетики

Использование «зеленой» энергии считается новым методом, но попытки применения возобновляемых ресурсов в энергетике ведут историю с 18 века:

  1. В 1737-1753 французский математик Бернар Форест де Белидор написал трактат «Гидравлическая архитектура». В нем содержится 200 чертежей гидотехнических сооружений, описана идея создания «солнечного насоса».
  2. В 1846 г. Построена первая ветроустановка по проекту Поля ла Круа.
  3. 1861 г. – запатентовано изобретение солнечной электростанции.
  4. 1881 г. – построена первая ГЭС на Ниагарском водопаде.
  5. 1913 г. – под руководством итальянского инженера Пьеро Джинори Конти построена первая геотермальная ЭС.
  6. 1931 г. – первая промышленная ветровая станция в Крыму.
  7. 1966 г. – во Франции запустили первую электростанцию, работающей на энергии волн.

Нефтяной кризис 1973 года дал новый стимул развитию возобновляемой энергетики. Ряд аварий на электростанциях на рубеже веков повысил интерес инженеров к «зеленым» источникам.

Плюсы и минусы использования

Не существует идеального энергоресурса, у каждого вида есть свои преимущества и недостатки. Плюсы альтернативных источников:

  • возобновляемость: солнце, ветер, приливы, круговорот воды не закончатся миллиарды лет;
  • относительная экологическая безопасность;
  • низкая себестоимость электроэнергии.

Альтернативная энергетика не лишена недостатков, к которым относятся:

  • невысокий КПД установок, в среднем 10-20%;
  • низкая мощность генераторов, за исключением ГЭС;
  • зависимость от погоды;
  • дорогое строительство и монтаж установок.

Какие же могут возникать проблемы с данным ресурсом?

  • Во-первых, цена на панели все еще не является общедоступной. Установка данного оборудования потребует от вас немалых вложений.
  • Зависимость от погодных условий. В пасмурные дни энергия либо вообще не вырабатывается, либо в очень малом количестве.
  • Для установки солнечной панели необходима внушительная площадь. Если использовать подобные на частном участке, вам потребуется либо отдельное место под них, либо достаточно большая крыша дома.

Как мы можем заметить, основные общие проблемы – это высокая стоимость, потребность в достаточно большой площади и зависимость от климата. Эти факторы значительно затормаживают внедрение и использование альтернативных источников энергии повсеместно.

Перспективы использования альтернативных источников энергии

Тем не менее, несмотря на наличие проблем и недостатков, сфера альтернативной энергетики активно развивается. Это происходит потому, что традиционные энергетические ресурсы используются в больших количествах, недра истощаются, а образование новых – процесс слишком длительный. Поэтому поиски подходящей замены сейчас очень важны.

Исследования в данной области не проходят даром, и перспективы использования альтернативных источников энергии все же существуют. Среди них:

  • Альтернативные ресурсы являются экологически чистыми. В процессе их преобразования не происходит загрязнения окружающей среды вредными выбросами, истощение запасов природных ископаемые и разрушения рельефа местности.
  • Эксплуатация оборудования не требует дорогостоящего сервиса. Вложивши крупную сумму в покупку, дальнейшие траты будут минимальны.
  • Высокая производительность и замена традиционным методам энергоснабжения также являются немаловажными аспектами, так как таким образом компенсируется существующий дефицит.

https://youtube.com/watch?v=kthbNRUUS5k

Что же касается использования альтернативных источников энергии в России, то в нынешнее время это происходит на очень низком уровне. Пока страна не воплощает весь существующий потенциал в жизнь. На это имеет достаточно сильное влияние такой аспект, как наличие больших запасов полезных ископаемых, которые используются для традиционного энергоснабжения.

Тем не менее, огромная площадь страны, включающая в себя разные климатические зоны и рельеф, дает возможность успешно развивать выработку альтернативной энергии. Но этого недостаточно для того, чтобы выгодно использовать подобные ресурсы. Для того, чтобы вывести производителей альтернативной энергетики на рынок, нужно соответствующее законодательство, разработка специальной тарифной системы, организация процесса заключения договоров о покупке энергии государством.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий